Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.248
Filtrar
1.
Biochem J ; 481(7): 515-545, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38572758

RESUMO

Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.


Assuntos
Peptídeo Hidrolases , Ubiquitina , Humanos , Ubiquitina/genética , Ubiquitina/metabolismo , Peptídeo Hidrolases/metabolismo , Ubiquitinação , Processamento de Proteína Pós-Traducional , Ubiquitinas/genética , Ubiquitinas/metabolismo , Dano ao DNA , Endopeptidases/metabolismo , Instabilidade Genômica
2.
PLoS One ; 19(4): e0298201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626042

RESUMO

Covid-19 disease caused by the deadly SARS-CoV-2 virus is a serious and threatening global health issue declared by the WHO as an epidemic. Researchers are studying the design and discovery of drugs to inhibit the SARS-CoV-2 virus due to its high mortality rate. The main Covid-19 virus protease (Mpro) and human transmembrane protease, serine 2 (TMPRSS2) are attractive targets for the study of antiviral drugs against SARS-2 coronavirus. Increasing consumption of herbal medicines in the community and a serious approach to these drugs have increased the demand for effective herbal substances. Alkaloids are one of the most important active ingredients in medicinal plants that have wide applications in the pharmaceutical industry. In this study, seven alkaloid ligands with Quercetin nucleus for the inhibition of Mpro and TMPRSS2 were studied using computational drug design including molecular docking and molecular dynamics simulation (MD). Auto Dock software was used to evaluate molecular binding energy. Three ligands with the most negative docking score were selected to be entered into the MD simulation procedure. To evaluate the protein conformational changes induced by tested ligands and calculate the binding energy between the ligands and target proteins, GROMACS software based on AMBER03 force field was used. The MD results showed that Phyllospadine and Dracocephin-A form stable complexes with Mpro and TMPRSS2. Prolinalin-A indicated an acceptable inhibitory effect on Mpro, whereas it resulted in some structural instability of TMPRSS2. The total binding energies between three ligands, Prolinalin-A, Phyllospadine and Dracocephin-A and two proteins MPro and TMRPSS2 are (-111.235 ± 15.877, - 75.422 ± 11.140), (-107.033 ± 9.072, -84.939 ± 10.155) and (-102.941 ± 9.477, - 92.451 ± 10.539), respectively. Since the binding energies are at a minimum, this indicates confirmation of the proper binding of the ligands to the proteins. Regardless of some Prolinalin-A-induced TMPRSS2 conformational changes, it may properly bind to TMPRSS2 binding site due to its acceptable binding energy. Therefore, these three ligands can be promising candidates for the development of drugs to treat infections caused by the SARS-CoV-2 virus.


Assuntos
Alcaloides , COVID-19 , Humanos , SARS-CoV-2/metabolismo , Quercetina/farmacologia , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Simulação de Dinâmica Molecular , Alcaloides/farmacologia , Antivirais/farmacologia , Antivirais/química
3.
Cell Mol Life Sci ; 81(1): 148, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509419

RESUMO

Propagation of viruses requires interaction with host factors in infected cells and repression of innate immune responses triggered by the host viral sensors. Cytosolic DNA sensing pathway of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) is a major component of the antiviral response to DNA viruses, also known to play a relevant role in response to infection by RNA viruses, including foot-and-mouth disease virus (FMDV). Here, we provide supporting evidence of cGAS degradation in swine cells during FMDV infection and show that the two virally encoded proteases, Leader (Lpro) and 3Cpro, target cGAS for cleavage to dampen the cGAS/STING-dependent antiviral response. The specific target sequence sites on swine cGAS were identified as Q140/T141 for the FMDV 3Cpro and the KVKNNLKRQ motif at residues 322-330 for Lpro. Treatment of swine cells with inhibitors of the cGAS/STING pathway or depletion of cGAS promoted viral infection, while overexpression of a mutant cGAS defective for cGAMP synthesis, unlike wild type cGAS, failed to reduce FMDV replication. Our findings reveal a new mechanism of RNA viral antagonism of the cGAS-STING innate immune sensing pathway, based on the redundant degradation of cGAS through the concomitant proteolytic activities of two proteases encoded by an RNA virus, further proving the key role of cGAS in restricting FMDV infection.


Assuntos
Vírus da Febre Aftosa , Animais , Suínos , Vírus da Febre Aftosa/metabolismo , Peptídeo Hidrolases/metabolismo , Transdução de Sinais , Imunidade Inata , Endopeptidases/genética , Endopeptidases/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Antivirais/metabolismo
4.
Viruses ; 16(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543698

RESUMO

The human genome is estimated to encode more than 500 proteases performing a wide range of important physiological functions. They digest proteins in our food, determine the activity of hormones, induce cell death and regulate blood clotting, for example. During viral infection, however, some proteases can switch sides and activate viral glycoproteins, allowing the entry of virions into new target cells and the spread of infection. To reduce unwanted effects, multiple protease inhibitors regulate the proteolytic processing of self and non-self proteins. This review summarizes our current knowledge of endogenous protease inhibitors, which are known to limit viral replication by interfering with the proteolytic activation of viral glycoproteins. We describe the underlying molecular mechanisms and highlight the diverse strategies by which protease inhibitors reduce virion infectivity. We also provide examples of how viruses evade the restriction imposed by protease inhibitors. Finally, we briefly outline how cellular protease inhibitors can be modified and exploited for therapeutic purposes. In summary, this review aims to summarize our current understanding of cellular protease inhibitors as components of our immune response to a variety of viral pathogens.


Assuntos
Inibidores de Proteases , Vírus , Humanos , Inibidores de Proteases/farmacologia , Glicoproteínas/metabolismo , Proteólise , Vírus/metabolismo , Peptídeo Hidrolases/metabolismo
5.
Viruses ; 16(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543732

RESUMO

Viral proteases are an important target for drug development, since they can modulate vital pathways in viral replication, maturation, assembly and cell entry. With the (re)appearance of several new viruses responsible for causing diseases in humans, like the West Nile virus (WNV) and the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding the mechanisms behind blocking viral protease's function is pivotal for the development of new antiviral drugs and therapeutical strategies. Apart from directly inhibiting the target protease, usually by targeting its active site, several new pathways have been explored to impair its activity, such as inducing protein aggregation, targeting allosteric sites or by inducing protein degradation by cellular proteasomes, which can be extremely valuable when considering the emerging drug-resistant strains. In this review, we aim to discuss the recent advances on a broad range of viral proteases inhibitors, therapies and molecular approaches for protein inactivation or degradation, giving an insight on different possible strategies against this important class of antiviral target.


Assuntos
Antivirais , Peptídeo Hidrolases , Humanos , Peptídeo Hidrolases/metabolismo , Antivirais/uso terapêutico , Endopeptidases , SARS-CoV-2/metabolismo , Proteases Virais
6.
mSystems ; 9(4): e0015324, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38517169

RESUMO

The gut microbiota plays a crucial role in health and is significantly modulated by human diets. In addition to Western diets which are rich in proteins, high-protein diets are used for specific populations or indications, mainly weight loss. In this study, we investigated the effect of protein supplementation on Bacteroides caccae, a Gram-negative gut symbiont. The supplementation with whey proteins led to a significant increase in growth rate, final biomass, and short-chain fatty acids production. A comprehensive genomic analysis revealed that B. caccae possesses a set of 156 proteases with putative intracellular and extracellular localization and allowed to identify amino acid transporters and metabolic pathways. We developed a fully curated genome-scale metabolic model of B. caccae that incorporated its proteolytic activity and simulated its growth and production of fermentation-related metabolites in response to the different growth media. We validated the model by comparing the predicted phenotype to experimental data. The model accurately predicted B. caccae's growth and metabolite production (R2 = 0.92 for the training set and R2 = 0.89 for the validation set). We found that accounting for both ATP consumption related to proteolysis, and whey protein accessibility is necessary for accurate predictions of metabolites production. These results provide insights into B. caccae's adaptation to a high-protein diet and its ability to utilize proteins as a source of nutrition. The proposed model provides a useful tool for understanding the feeding mechanism of B. caccae in the gut microbiome.IMPORTANCEMicrobial proteolysis is understudied despite the availability of dietary proteins for the gut microbiota. Here, the proteolytic potential of the gut symbiont Bacteroides caccae was analyzed for the first time using pan-genomics. This sketches a well-equipped bacteria for protein breakdown, capable of producing 156 different proteases with a broad spectrum of cleavage targets. This functional potential was confirmed by the enhancement of growth and metabolic activities at high protein levels. Proteolysis was included in a B. caccae metabolic model which was fitted with the experiments and validated on external data. This model pinpoints the links between protein availability and short-chain fatty acids production, and the importance for B. caccae to gain access to glutamate and asparagine to promote growth. This integrated approach can be generalized to other symbionts and upscaled to complex microbiota to get insights into the ecological impact of proteins on the gut microbiota.


Assuntos
Bactérias , Bacteroides , Ácidos Graxos Voláteis , Humanos , Proteólise , Bactérias/genética , Ácidos Graxos Voláteis/metabolismo , Peptídeo Hidrolases/metabolismo
7.
Int J Biol Macromol ; 265(Pt 2): 131066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521339

RESUMO

Human rhinovirus 3C protease (HRV 3CP) has a high specificity against the substrate of LEVLFQ↓G at P1' site, which plays an important role in biotechnology and academia as a fusion tag removal tool. However, a non-ignorable limitation is that an extra residue of Gly would remain at the N terminus of the recombinant target protein after cleavage with HRV 3CP, thus potentially causing protein mis-functionality or immunogenicity. Here, we developed a combinatorial strategy by integrating structure-guided library design and high-throughput screening of eYESS approach for HRV 3CP engineering to expand its P1' specificity. Finally, a C3 variant was obtained, exhibiting a broad substrate P1' specificity to recognize 20 different amino acids with the highest activity against LEVLFQ↓M (kcat/KM = 3.72 ± 0.04 mM-1∙s-1). Further biochemical and NGS-mediated substrate profiling analysis showed that C3 variant still kept its substrate stringency at P1 site and good residue tolerance at P2' site, but with an expanded P1' specificity. Structural simulation of C3 indicated a reconstructed S1' binding pocket as well as new interactions with the substrates. Overall, our studies here prompt not only the practical applications and understanding of substrate recognition mechanisms of HRV 3CP, also provide new tools for other enzyme engineering.


Assuntos
Endopeptidases , Peptídeo Hidrolases , Humanos , Peptídeo Hidrolases/metabolismo , Frequência Cardíaca , Endopeptidases/metabolismo , Aminoácidos , Proteases Virais 3C/metabolismo , Proteínas Recombinantes/química , Especificidade por Substrato
8.
Int J Biol Macromol ; 265(Pt 1): 130644, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462102

RESUMO

The main proteinase (Mpro) of SARS-CoV-2 plays a critical role in cleaving viral polyproteins into functional proteins required for viral replication and assembly, making it a prime drug target for COVID-19. It is well known that noncompetitive inhibition offers potential therapeutic options for treating COVID-19, which can effectively reduce the likelihood of cross-reactivity with other proteins and increase the selectivity of the drug. Therefore, the discovery of allosteric sites of Mpro has both scientific and practical significance. In this study, we explored the binding characteristics and inhibiting process of Mpro activity by two recently reported allosteric inhibitors, pelitinib and AT7519 which were obtained by the X-ray screening experiments, to probe the allosteric mechanism via molecular dynamic (MD) simulations. We found that pelitinib and AT7519 can stably bind to Mpro far from the active site. The binding affinity is estimated to be -24.37 ± 4.14 and - 26.96 ± 4.05 kcal/mol for pelitinib and AT7519, respectively, which is considerably stable compared with orthosteric drugs. Furthermore, the strong binding caused clear changes in the catalytic site of Mpro, thus decreasing the substrate accessibility. The community network analysis also validated that pelitinib and AT7519 strengthened intra- and inter-domain communication of Mpro dimer, resulting in a rigid Mpro, which could negatively impact substrate binding. In summary, our findings provide the detailed working mechanism for the two experimentally observed allosteric sites of Mpro. These allosteric sites greatly enhance the 'druggability' of Mpro and represent attractive targets for the development of new Mpro inhibitors.


Assuntos
Aminoquinolinas , Compostos de Anilina , COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Cisteína Endopeptidases/metabolismo , Simulação de Dinâmica Molecular , Antivirais/farmacologia , Antivirais/química
9.
Methods Mol Biol ; 2758: 49-60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549007

RESUMO

Neuropeptides are bioactive peptides that are synthesized and secreted by neurons in signaling pathways in the brain. Peptides and proteins are extremely vulnerable to proteolytic cleavage when their biological surrounding changes. This makes neuropeptidomics challenging due to the rapid alterations that occur to the peptidome after harvesting of brain tissue samples. For a successful neuropeptidomic study, the biological tissue sample analyzed should resemble the living state as much as possible. Heat stabilization has been proven to inhibit postmortem degradation by denaturing proteolytic enzymes, hence increasing identification rates of neuropeptides. Here, we describe two different stabilization protocols for rodent brain samples that increase the number of intact mature neuropeptides and minimize interference from degradation products of abundant proteins. Additionally, we present an extraction protocol that aims to extract a wide range of hydrophilic and hydrophobic neuropeptides by sequentially using an aqueous and an organic extraction medium.


Assuntos
Neuropeptídeos , Neuropeptídeos/metabolismo , Peptídeos/metabolismo , Proteólise , Peptídeo Hidrolases/metabolismo , Encéfalo/metabolismo
10.
Methods Mol Biol ; 2758: 199-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549015

RESUMO

Peptides have broad biological significance among different species. Intracellular peptides are considered a particular class of bioactive peptides, whose generation is initiated by proteasomal degradation of cytosolic, nuclear, or mitochondrial proteins. To extract and purify intracellular peptides, which may apply for biological peptides in general, it is important to consider the initial source: tissue, cell, or fluid. First, it is important to proceed fast with inactivation of proteases and/or peptidases commonly present in the biological source of peptides, which might rapidly degrade peptides during the initial process of extraction. The incubation of biological tissues, cells, and fluids at 80 °C for up to 20 min have been sufficient to fully inactivate proteases or peptidases activities. It is particularly important not to acidify the samples at high temperature, because it can lead to nonspecific hydrolysis reactions; particularly, the Asp-Pro peptide bond can be cleaved at acidic environments and elevated temperatures. Unfortunately, not every sample can have proteinases and peptidases denatured by heating the biological source of intracellular peptides. Plasma, for example, when heated at temperatures higher than 55 °C can clot and trap peptides within the fibrin net. Therefore, alternative conditions for inactivating proteinases and peptidases must apply for plasma samples. In this chapter, the most successful methods used in our laboratory to extract intracellular peptides are described.


Assuntos
Peptídeo Hidrolases , Peptídeos , Peptídeos/química , Peptídeo Hidrolases/metabolismo , Endopeptidases , Hidrólise , Proteômica
11.
Methods Mol Biol ; 2758: 375-385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549025

RESUMO

Here, we report our approach to peptidomic analysis of the plant model Physcomitrium patens. Intracellular and extracellular peptides were extracted under conditions preventing proteolytic digestion by endogenous proteases. The extracts were fractionated on size exclusion columns to isolate intracellular peptides and on reversed-phase cartridges to isolate extracellular peptides, with the isolated peptides subjected to LC-MS/MS analysis. Mass spectrometry data were analyzed for the presence of peptides derived from the known proteins or microproteins encoded by small open reading frames (<100 aa, smORFs) predicted in the moss genome. Experimental details are provided for each step.


Assuntos
Bryopsida , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Peptídeos/química , Proteínas/metabolismo , Peptídeo Hidrolases/metabolismo , Bryopsida/metabolismo
12.
mBio ; 15(4): e0348323, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38511930

RESUMO

Staphylococcus aureus is one of the leading causes of hospital-acquired infections, many of which begin following attachment and accumulation on indwelling medical devices or diseased tissue. These infections are often linked to the establishment of biofilms, but another often overlooked key characteristic allowing S. aureus to establish persistent infection is the formation of planktonic aggregates. Such aggregates are physiologically similar to biofilms and protect pathogens from innate immune clearance and increase antibiotic tolerance. The cell-wall-associated protein SasG has been implicated in biofilm formation via mechanisms of intercellular aggregation but the mechanism in the context of disease is largely unknown. We have previously shown that the expression of cell-wall-anchored proteins involved in biofilm formation is controlled by the ArlRS-MgrA regulatory cascade. In this work, we demonstrate that the ArlRS two-component system controls aggregation, by repressing the expression of sasG by activation of the global regulator MgrA. We also demonstrate that SasG must be proteolytically processed by a non-staphylococcal protease to induce aggregation and that strains expressing functional full-length sasG aggregate significantly upon proteolysis by a mucosal-derived host protease found in human saliva. We used fractionation and N-terminal sequencing to demonstrate that human trypsin within saliva cleaves within the A domain of SasG to expose the B domain and induce aggregation. Finally, we demonstrated that SasG is involved in virulence during mouse lung infection. Together, our data point to SasG, its processing by host proteases, and SasG-driven aggregation as important elements of S. aureus adaptation to the host environment.IMPORTANCEHere, we demonstrate that the Staphylococcus aureus surface protein SasG is important for cell-cell aggregation in the presence of host proteases. We show that the ArlRS two-component regulatory system controls SasG levels through the cytoplasmic regulator MgrA. We identified human trypsin as the dominant protease triggering SasG-dependent aggregation and demonstrated that SasG is important for S. aureus lung infection. The discovery that host proteases can induce S. aureus aggregation contributes to our understanding of how this pathogen establishes persistent infections. The observations in this study demonstrate the need to strengthen our knowledge of S. aureus surface adhesin function and processing, regulation of adhesin expression, and the mechanisms that promote biofilm formation to develop strategies for preventing chronic infections.


Assuntos
Proteínas de Membrana , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Proteínas de Membrana/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeo Hidrolases/metabolismo , Tripsina/metabolismo , Biofilmes , Infecções Estafilocócicas/metabolismo
13.
Arch Microbiol ; 206(4): 180, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502196

RESUMO

Serratiopeptidase is a bacterial metalloprotease used in a variety of medical applications. The multidimensional properties of serratiopeptidase make it noticeable as a miraculous enzyme. Anti-coagulant, anti-inflammatory and anti-biofilm activity of serratiopeptidase making it useful in reducing pain and swelling associated with various conditions including arthritis, diabetes, cancer, swelling, pain and also thrombolytic disorders. It breaks down fibrin, thins the fluids formed during inflammation and due to its anti-biofilm activity, can be used in the combination of antibiotics to reduce development of antibiotic resistance. However, some drawbacks like sensitivity to environmental conditions and low penetration into cells due to its large size have limited its usage as a potent pharmaceutical agent. To overcome such limitations, improved versions of the enzyme were introduced using protein engineering in our previous studies. Novel functional serratiopeptidases with shorter length and higher stability have seemingly created a hope for using this enzyme as a more effective therapeutic enzyme. This review explains the structural properties and functional aspects of serratiopeptidase, its main characteristics and properties, pre-clinical and clinical applications of the enzyme, improved qualities of the modified forms, different formulations of the enzyme, and the potential future developments.


Assuntos
Metaloproteases , Peptídeo Hidrolases , Humanos , Peptídeo Hidrolases/metabolismo , Metaloproteases/química , Anti-Inflamatórios , Dor/tratamento farmacológico
14.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38479791

RESUMO

Lactic acid bacteria (LAB) have evolved into fastidious microorganisms that require amino acids from environmental sources. Some LAB have cell envelope proteases (CEPs) that drive the proteolysis of high molecular weight proteins like casein in milk. CEP activity is typically studied using casein as the predominant substrate, even though CEPs can hydrolyze other protein sources. Plant protein hydrolysis by LAB has rarely been connected to the activity of specific CEPs. This study aims to show the activity of individual CEPs using LAB growth in a minimal growth medium supplemented with high molecular weight casein or potato proteins. Using Lactococcus cremoris MG1363 as isogenic background to express CEPs, we demonstrate that CEP activity is directly related to growth in the protein-supplemented minimal growth media. Proteolysis is analyzed based on the amino acid release, allowing a comparison of CEP activities and analysis of amino acid utilization by L. cremoris MG1363. This approach provides a basis to analyze CEP activity on plant-based protein substrates as casein alternatives and to compare activity of CEP homologs.


Assuntos
Lactococcus lactis , Peptídeo Hidrolases , Animais , Peptídeo Hidrolases/metabolismo , Caseínas/metabolismo , Peso Molecular , Endopeptidases/química , Lactococcus lactis/metabolismo , Aminoácidos/metabolismo
15.
Biotechnol J ; 19(3): e2300307, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472101

RESUMO

BACKGROUND: The worldwide growing demand for human insulin for treating diabetes could be supplied by transgenic animals producing insulin in their milk. METHODS AND RESULTS: Pseudo-lentivirus containing the bovine ß-casein promoter and human insulin sequences was used to produce modified adult fibroblasts, and the cells were used for nuclear transfer. Transgenic embryos were transferred to recipient cows, and one pregnancy was produced. Recombinant protein in milk was evaluated using western blotting and mass spectrometry. One transgenic cow was generated, and in milk analysis, two bands were observed in western blotting with a molecular mass corresponding to the proinsulin and insulin. The mass spectrometry analysis showed the presence of human insulin more than proinsulin in the milk, and it identified proteases in the transgenic milk that could convert proinsulin into insulin and insulin-degrading enzyme that could degrade the recombinant protein. CONCLUSION: The methodologies used for generating the transgenic cow allowed the detection of the production of recombinant protein in the milk at low relative expression compared to milk proteins, using mass spectrometry, which was efficient for detecting recombinant protein with low expression in milk. Milk proteases could act on protein processing converting recombinant protein to functional protein. On the other hand, some milk proteases could act in degrading the recombinant protein.


Assuntos
Leite , Proinsulina , Feminino , Gravidez , Animais , Bovinos , Humanos , Animais Geneticamente Modificados/metabolismo , Proinsulina/análise , Proinsulina/metabolismo , Leite/química , Proteínas Recombinantes/metabolismo , Insulina/análise , Peptídeo Hidrolases/metabolismo
16.
Sci Total Environ ; 922: 171409, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38432367

RESUMO

Arsenic (As) is a widespread metalloid with well-known toxicity. To date, numerous studies have focused on individual level toxicity (e.g., growth and reproduction) of As to typical invertebrate springtails in soils, however, the molecular level toxicity and mechanism was poorly understood. Here, an integrated transcriptomics and metabolomics approach was used to reveal responses of Folsomia candida exposed to As(V) of 10 and 60 mg kg-1 at which the individual level endpoints were influenced. Transcriptomics identified 5349 and 4020 differentially expressed genes (DEGs) in low and high concentration groups, respectively, and the most DEGs were down-regulated. Enrichment analysis showed that low and high concentrations of As(V) significantly inhibited chromatin/chromosome-related biological processes (chromatin/chromosome organization, nucleosome assembly and organization, etc.) in springtails. At high concentration treatment, structural constituent of cuticle, chitin metabolic process and peptidase activity (serine-type peptidase activity, endopeptidase activity, etc.) were inhibited or disturbed. Moreover, the apoptosis pathway was significantly induced. Metabolomics analysis identified 271 differential changed metabolites (DCMs) in springtails exposed to high concentration of As. Steroid hormone biosynthesis was the most significantly affected pathway. Several DCMs that related to chitin metabolism could further support above transcriptomic results. These findings further extended the knowledge of As toxic mechanisms to soil fauna and offer important information for the environmental risk assessment.


Assuntos
Arsênio , Artrópodes , Poluentes do Solo , Animais , Arsênio/metabolismo , Poluentes do Solo/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Cromatina/metabolismo , Peptídeo Hidrolases/metabolismo , Quitina/metabolismo , Solo/química
17.
Biochem Biophys Res Commun ; 706: 149746, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461646

RESUMO

Polyglycine hydrolases are fungal effectors composed of an N-domain with unique sequence and structure and a C-domain that resembles ß-lactamases, with serine protease activity. These secreted fungal proteins cleave Gly-Gly bonds within a polyglycine sequence in corn ChitA chitinase. The polyglycine hydrolase N-domain (PND) function is unknown. In this manuscript we provide evidence that the PND does not directly participate in ChitA cleavage. In vitro analysis of site-directed mutants in conserved residues of the PND of polyglycine hydrolase Es-cmp did not specifically impair protease activity. Furthermore, in silico structural models of three ChitA-bound polyglycine hydrolases created by High Ambiguity Driven protein-protein DOCKing (HADDOCK) did not predict significant interactions between the PND and ChitA. Together these results suggest that the PND has another function. To determine what types of PND-containing proteins exist in nature we performed a computational analysis of Foldseek-identified PND-containing proteins. The analysis showed that proteins with PNDs are present throughout biology as either single domain proteins or fused to accessory domains that are diverse but are usually proteases or kinases.


Assuntos
Peptídeo Hidrolases , Peptídeos , Peptídeos/química , Peptídeo Hidrolases/metabolismo , Endopeptidases/metabolismo , Proteólise
18.
Commun Biol ; 7(1): 301, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461223

RESUMO

Hyalectan cleavage may play an important role in extracellular matrix remodeling. However, the proteolytic enzyme responsible for hyalectan degradation for fetal membrane rupture at parturition remains unknown. Here, we reveal that versican (VCAN) is the major hyalectan in the amnion, where its cleavage increases at parturition with spontaneous rupture of membrane. We further reveal that ADAMTS4 is a crucial proteolytic enzyme for VCAN cleavage in the amnion. Inflammatory factors may enhance VCAN cleavage by inducing ADAMTS4 expression and inhibiting ADAMTS4 endocytosis in amnion fibroblasts. In turn, versikine, the VCAN cleavage product, induces inflammatory factors in amnion fibroblasts, thereby forming a feedforward loop between inflammation and VCAN degradation. Mouse studies show that intra-amniotic injection of ADAMTS4 induces preterm birth along with increased VCAN degradation and proinflammatory factors abundance in the fetal membranes. Conclusively, there is enhanced VCAN cleavage by ADAMTS4 in the amnion at parturition, which can be reenforced by inflammation.


Assuntos
Proteína ADAMTS4 , Âmnio , Versicanas , Feminino , Humanos , Recém-Nascido , Gravidez , Proteína ADAMTS4/metabolismo , Âmnio/metabolismo , Inflamação/metabolismo , Parto/metabolismo , Peptídeo Hidrolases/metabolismo , Nascimento Prematuro/metabolismo , Versicanas/metabolismo , Animais , Camundongos
19.
World J Microbiol Biotechnol ; 40(5): 144, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532149

RESUMO

Proteases, enzymes that catalyze the hydrolysis of peptide bonds in proteins, are important in the food industry, biotechnology, and medical fields. With increasing demand for proteases, there is a growing emphasis on enhancing their expression and production through microbial systems. However, proteases' native hosts often fall short in high-level expression and compatibility with downstream applications. As a result, the recombinant production of proteases has become a significant focus, offering a solution to these challenges. This review presents an overview of the current state of protease production in prokaryotic and eukaryotic expression systems, highlighting key findings and trends. In prokaryotic systems, the Bacillus spp. is the predominant host for proteinase expression. Yeasts are commonly used in eukaryotic systems. Recent advancements in protease engineering over the past five years, including rational design and directed evolution, are also highlighted. By exploring the progress in both expression systems and engineering techniques, this review provides a detailed understanding of the current landscape of recombinant protease research and its prospects for future advancements.


Assuntos
Bacillus , Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismo , Biotecnologia/métodos , Endopeptidases , Bacillus/metabolismo , Leveduras/metabolismo , Proteínas Recombinantes/metabolismo
20.
FEBS Lett ; 598(6): 684-701, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38426217

RESUMO

Acylaminoacyl peptidases (AAPs) play a pivotal role in various pathological conditions and are recognized as potential therapeutic targets. AAPs exhibit a wide range of activities, such as acylated amino acid-dependent aminopeptidase, endopeptidase, and less studied carboxypeptidase activity. We have determined the crystal structure of an AAP from Geobacillus stearothermophilus (S9gs) at 2.0 Å resolution. Despite being annotated as an aminopeptidase in the NCBI database, our enzymatic characterization proved S9gs to be a carboxypeptidase. Solution-scattering studies showed that S9gs exists as a tetramer in solution, and crystal structure analysis revealed adaptations responsible for the carboxypeptidase activity of S9gs. The findings present a hypothesis for substrate selection, substrate entry, and product exit from the active site, enriching our understanding of this rare carboxypeptidase.


Assuntos
Geobacillus stearothermophilus , Peptídeo Hidrolases , Geobacillus stearothermophilus/metabolismo , Peptídeo Hidrolases/metabolismo , Endopeptidases , Aminopeptidases , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...